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Human Core Temperature Prediction
for Heat-Injury Prevention

Srinivas Laxminarayan, Mark J. Buller, William J. Tharion, and Jaques Reifman

Abstract—Previously, our group developed autoregressive (AR)
models to predict human core temperature and help prevent hyper-
thermia (temperature > 39 °C). However, the models often yielded
delayed predictions, limiting their application as a real-time warn-
ing system. To mitigate this problem, here we combined AR-model
point estimates with statistically derived prediction intervals (PIs)
and assessed the performance of three new alert algorithms [AR
model plus PI, median filter of AR model plus PI decisions, and
an adaptation of the sequential probability ratio test (SPRT)]. Us-
ing field-study data from 22 soldiers, including five subjects who
experienced hyperthermia, we assessed the alert algorithms for
AR-model prediction windows from 15–30 min. Cross-validation
simulations showed that, as the prediction windows increased, im-
provements in the algorithms’ effective prediction horizons were
offset by deteriorating accuracy, with a 20-min window providing
a reasonable compromise. Model plus PI and SPRT yielded the
largest effective prediction horizons (� 18 min), but these were
offset by other performance measures. If high sensitivity and a
long effective prediction horizon are desired, model plus PI pro-
vides the best choice, assuming decision switches can be tolerated.
In contrast, if a small number of decision switches are desired,
SPRT provides the best compromise as an early warning system of
impending heat illnesses.

Index Terms—Autoregressive (AR) model, core temperature,
hyperthermia, prediction interval (PI), sequential probability ratio
test (SPRT).

I. INTRODUCTION

H EAT injury is a problem for the United States (U.S.)
Armed Forces, especially during deployments to local-

ities with hot and humid climates, and trends show the number
of heat injury cases to be on the rise each year [1]. From 2006
through 2010, there were 2887 heat injuries across the services,
including 311 cases of heat stroke. The risk of heat injury is
modulated by both intrinsic factors (such as genetics, fitness,
acclimatization, and sleep quality) and extrinsic factors (such as
exercise intensity and duration, clothing and equipment, ambi-
ent temperature, relative humidity, and solar radiation). In any
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case, rising body core temperature is a sign of impending heat
injury, starting with heat stress (beyond 37 °C), progressing to
hyperthermia and heat exhaustion (beyond 39 °C), and then
to heat stroke (beyond 40 °C) [2]. The rising core tempera-
ture sets off a cascade of physiological responses to preserve
temperature homeostasis (∼37 °C). However, beyond a critical
temperature, which depends upon an individual’s intrinsic and
extrinsic factors, homeostasis cannot be sustained, leading to
pathophysiological responses that may culminate in multiorgan
dysfunction and death [2], [3].

Early recognition of heat stress combined with changes of
activity and cooling strategies—such as cold-water immersion,
water spraying, rest in an air-conditioned area, consumption
of cold beverages, and ingestion of crushed ice—can reduce
the morbidity and mortality associated with heat illnesses [4].
However, certain circumstances make early recognition and in-
tervention challenging. For example, at the height of a military
operation or during an athletic competition, soldiers and athletes
may not perceive the warning signs of a rising core temperature
and impending heat illnesses [5]. This could be achieved by a
system capable of recognizing early trends, reliably predicting
the onset of core temperature rise, and generating alerts. Sensor
technologies, which afford the ability to measure human core
temperature via ingestible pills [6], and mathematical predic-
tive models [7]–[9] could be coupled to develop such a hard-
ware/software system and potentially minimize the incidences
of heat injuries.

Data-driven models, such as artificial neural networks
(ANNs) and autoregressive (AR) models, which use a time se-
ries of recent-past measurements to predict their future time
courses, have been widely applied for forecasting various phys-
ical and biological signals [10]–[12]. (Note that AR models con-
stitute a particular case of ANNs with linear mapping functions.)
In our earlier work [8], we used past core temperature mea-
surements to “learn” autocorrelations inherently present in the
time-series data and develop AR models to predict future core
temperature values for a defined prediction window. We also
computed the corresponding prediction intervals (PIs), which
provide a measure of reliability of the AR-model predictions
[13]. Importantly, we found that because AR models only de-
pend on the frequency of the underlying time-series data, and
because the frequency of the core-temperature signal is invari-
ant from individual to individual, AR models could be consti-
tuted as “universal” predictors. That is, once an AR model has
learned autocorrelations for one individual, it can be directly
used to predict the core temperature of other individuals in sim-
ilar populations without any additional adaption of the model
parameters.
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However, when we attempted to use AR models for real-
time prediction of core temperature, we found a key limitation
[9]: the AR models introduced significant prediction time lags
(sometimes as long as the prediction window itself) during large
excursions of the core temperature signal, which is exactly the
condition when we desire the model to be most accurate. Such
prediction time lags spring from the observation that AR mod-
els are essentially filters applied to an ordered sequence of data
samples and, hence, yield delayed responses. This is a well-
recognized problem also documented in other applications of
predictive models [14]–[16]. To be clinically useful, the predic-
tions must be made with sufficient lead-time (effective predic-
tion horizon: estimated to be ∼20 min in hyperthermia [9]) to
allow for proactive interventions that can alter the course of the
clinical outcome.

In this study, we aim to address this limitation, so as to al-
low for the practical use of AR models as an effective tool to
accurately predict core-temperature rises and provide clinically
useful alerts of impending heat injury. To this end, we developed
three new alert algorithms that combine AR model predictions
and associated PIs, and assessed their ability to reduce delays
in the prediction of hyperthermia. We also compared their per-
formance against that of the AR-model predictions alone. The
simplest alert algorithm only uses the current AR-model predic-
tion and PI. The other two algorithms use a series of recent-past
predictions and PIs to make the decision. Of these, one alert al-
gorithm provides explicit, adjustable parameters, separate from
the AR-model parameters, to tradeoff conflicting measures of
performance.

To evaluate the performance of these algorithms, we used
field-study data from 22 subjects involved in military activities,
including five subjects whose core temperature rose beyond
39 °C, the onset of hyperthermia. We assessed the algorithms
against four measures of performance, namely, effective predic-
tion horizon, sensitivity, specificity, and decision switches. Two
algorithms reliably predicted the onset of hyperthermia∼20 min
in advance with reasonably high sensitivity and specificity, with
one of them yielding fewer decision switches. These promising
results form the basis for real-time core temperature predictions,
which, when coupled with temperature sensors, could provide
reliable early warning of impending heat illnesses.

II. METHODS

A. AR Model

Given temperature measurements yn−i sampled every S min,
where n is the current discrete time index and i = 0, 1, . . . ,
m – 1, the AR model of order m predicts signal ŷn+1 , at time
point n + 1, through a linear combination of the antecedent
core-temperature samples as follows:

ŷn+1 =
m−1∑

i=0

biyn−i (1)

where b denotes the vector of m unknown AR coefficients.
To make predictions M time steps ahead (prediction window
P = M × S min ahead), we iteratively used (1) M times, sub-

stituting the unobserved signals at n � n+1 in the summation by
their corresponding predicted values. The order m of the model
specifies the required initial waiting period for which data sam-
ples need to be collected before real-time predictions can be
made. We chose the sampling period S that preserved the im-
portant frequencies and rejected the high-frequency noise in the
magnitude spectrum of the core-temperature data [17]. Subse-
quently, we chose m to be the number of lags in the data beyond
which the partial autocorrelation function was essentially zero
[10].

Before applying the AR model, we must first estimate the
AR coefficients b using some “training” data. To estimate b, we
used the standard forward–backward least squares procedure
(see [17, Ch. 8]) implemented in MATLAB version 7.14 (func-
tion ar). In this procedure, we first used the entire time series of
temperature measurements to form a time-forward convolution
matrix, and then a time-backward convolution matrix. Next,
we combined the two matrices into one, estimated the corre-
sponding autocorrelation matrix, and inverted it to estimate the
coefficients b. An advantage of the forward–backward proce-
dure is that it implicitly regularizes the autocorrelation matrix
(which can be ill conditioned due to noise in the data) to ensure
robust estimates of b.

In many safety-critical applications, providing single-point
temperature predictions may not be sufficient for decision mak-
ing and may require information about the uncertainty of the
predicted values. In earlier work [18], we developed a tech-
nique based on the statistical bootstrap method [19] to estimate
prediction uncertainty in the form of PIs. The technique relies on
the idea of model resampling [13] rather than data resampling,
where a population of models is built based on blocks of data
that are randomly drawn from the original time series to form an
empirical distribution of models (i.e., a distribution of the model
coefficients). Following this procedure [18] to compute the PIs,
we estimated the covariance matrix Σ of the AR model from a
distribution of models for an M time-step-ahead predictor and
used the following equation [18]:

PI = Zα/2

√
yT Σy + σ2 (2)

where Zα/2 denotes the prediction factor associated with an
α% type I error, y represents a vector of data samples y =[
yn yn−1 . . . yn−m+1

]T
, and σ2 denotes the variance of the

measurement noise. We used the AR model in (1) to make M
step-ahead predictions (P-min-ahead) of core temperature and
(2) to estimate the PIs.

As mentioned earlier, we found that AR models introduce
significant prediction time lags during large excursions of the
core temperature signal [9]. This significantly reduces the ef-
fective prediction horizon whenever there is a steep rise in core
temperature, which is the case when the temperature nears the
hyperthermic threshold of 39 °C. To address this limitation, we
investigated three alert algorithms that combine AR model pre-
dictions and associated PIs to determine whether the predicted
core temperature exceeded a predefined threshold and compared
their performance to the AR-model predictions alone.
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B. Sequential Probability Ratio Test (SPRT)

Bayesian approaches, which use information from previous
data (previous predictions in this case) and current observations
(current predictions), offer a natural choice for this decision-
making problem. The SPRT [20] is a Bayesian approach that
considers increasing evidence from a sequence of observations
to make a decision [21], [22]. Briefly, given a sequence of core-
temperature samples X1 , X2 , . . . , not necessarily independent,
so that X ∼ N (μX , σ2

X ) is a normal Gaussian process with
unknown mean μX and a given variance σ2

X , the SPRT tests
the null hypothesis (H0) that μX = μ0 against an alternative
hypothesis (H1 ) that μX = μ1 , where μ0 and μ1 denote the mean
temperature values below and above the temperature threshold,
respectively, with μ0 < μ1 . If p0 and p1 are the probability
density functions governing H0 and H1 , respectively, then the
observed likelihood ratio at decision time t (corresponding to the

time point n) can be represented as ln =
K−1∏
k=0

p1 (Xn −k )
p0 (Xn −k ) , where

K is the length of the sequence of samples being considered.
In order to apply the SPRT algorithm to our problem, we

combined three predicted values, namely, the AR-model pre-
diction (ŷn−k ), the upper PI (ŷn−k + PIn−k ), and the lower PI
(ŷn−k − PIn−k ), using weights θ and φ to form:

Xn−k = ŷn−k − PIn−k (1 − θφ − φ) (3)

where k = (0, 1, . . . , K − 1) denotes a time index and the
weights θ and φ are constrained to be between 0 and 1. In (3),
when φ = 0, Xn−k equals the lower PI; when φ = 1 and θ =
0, Xn−k equals the AR-model prediction; and when θ = φ = 1,
Xn−k equals the upper PI. Thus, Xn lies between the lower and
upper PIs for all values of θ and φ. Note that a decision at time t,
for a prediction window of P min, is actually made at time t–P,
which corresponds to time point n–M for M steps-ahead AR-
model predictions. Then, following Wald’s SPRT methodology
[20], we

accepted H0 (below temperature threshold)
if log(ln ) < log(B); or

accepted H1 (above temperature threshold)
if log(ln ) < log(A); or

made no decision and proceeded to time n + 1
if log(B) ≤ log(ln ) ≤ log(A)

(4)

where A and B are constants that control the false-positive rate
and false-negative rate, respectively, with 0 < B < A < ∞.
The SPRT algorithm required the estimation of seven param-
eters, the two weights θ and φ in (3) and the five parameters
μ0 , μ1 , σX , A, and B, from a subject’s core-temperature data.
A large difference between μ0 and μ1 , with a small σX (which
depends on the measurement noise), leads to good separabil-
ity between temperature values below and above the threshold,
respectively. This leads to a significant increase or decrease in
log(ln ), depending on whether the AR model tracks a rise or fall
in the core temperature data, respectively. A large difference
between log(A) and log(B) ensures the reduction of false alerts
while maintaining the sensitivity of the algorithm.

C. Proposed Alert Algorithms

As mentioned earlier, AR model predictions are significantly
delayed during steep rises in core temperature. To address this
problem and provide an alert before the core temperature reaches
a specified threshold, we compared the performance of three
algorithms, which use AR-model predictions and PIs, against
the AR model. Of these algorithms, the SPRT is the only one
that required estimation of additional parameters. All algorithms
output either 0 or 1 (no alert or alert, respectively). The four
algorithms are as follows:

1) Model: Uses the AR-model prediction at the current time
instant to make a decision.

2) Model+PI: Uses the upper PI (AR-model predictions plus
PI) at the current time instant to make a decision.

3) Median Filter: Outputs the median of a finite sequence of
decisions made by Model+PI. The length of the sequence
of decisions was fixed to an odd number (five) to ensure
that the output was either 0 or 1.

4) SPRT: Outputs a decision based on (4) after collecting
evidence from a series of AR-model predictions and PIs
[see (3)]. For a given temperature threshold, we obtained
the SPRT parameters by minimizing a cost function [see
Appendix A, (A1)] formed as a composite of the four
measures of performance described in Section II-D.

D. Measures for Evaluating the Performance
of the Proposed Algorithms

To evaluate the proposed alert algorithms, we defined an
“event” as an episode where the core temperature measurement
rises and remains above a specified temperature threshold for
�15 min [see Fig. 1(a)]. The event ends when the measured
temperature decreases below the threshold and remains below
the threshold for �15 min. Thus, an event was mapped into a 1
(true response) when the measured temperature was above the
threshold and 0 otherwise. Similarly, a model-predicted event
was defined as an episode where the algorithm’s output (the
model-predicted response) was 1 [see Fig. 1(a)].

We evaluated the algorithms’ performance using four mea-
sures:

1) Sensitivity: the fraction of time points during which
both the true and the model-predicted responses were 1
[Fig. 1(c); involving time spans A and B], including the
time points up to at most 30 min prior to the true event
onset when the model-predicted responses were 1 and the
true responses were 0 [Fig. 1(c); scenario ii]. This al-
lowed us to reward model-predicted events that arrived up
to 30 min before the true event onset, as it takes >30 min
for the core temperature to rise by 1 °C during exercise
[23]. Sensitivity was expressed as a percentage of time
points of the entire time series.

2) Specificity: the fraction of time points during which
both the true and the model-predicted responses were 0
[Fig. 1(c) and (d); involving time spans C and D]. For
computing specificity, we did not consider time points up
to at most 30 min prior to the true event onset and time
points immediately following the true event, when the



886 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 3, MAY 2015

Fig. 1. Definition of a true event and the four measures of algorithm performance. These measures compare a true event, i.e., the episode when the core
temperature rose above a certain temperature threshold, with the model-predicted event. (a) Measurement data (dotted line) and P-min-ahead AR-model
predictions (dashed line). In this example, the AR-model used data until time point t to make a prediction at time point t + P. (b) Binary responses of
the true event (solid line) and the model-predicted event (dashed line). The effective prediction horizon was defined as the prediction window P plus the
time difference Δt between the onsets of the true and model-predicted events (see text for complete definition). (c) In scenario i, the prediction was de-
layed (Δt < 0) and in scenario ii, it anticipated the true event (Δt > 0). We computed sensitivity and specificity using time markers A, B, C, and D.
Sensitivity was defined as the fraction of B included in max(A, B) (<100% in scenario i and 100% in scenario ii). Specificity was defined as the frac-
tion of C included in max(C, D–Δt) if Δt > 0 and the fraction of C included in max(C, D) otherwise. (d) Scenario where there was no true event
but the model predicted an event. In this case, we could only compute specificity and the number of decision switches; the other two measures were
undefined.

model-predicted responses were 1 and the true responses
were 0 [Fig. 1(c); scenario ii]. Specificity was expressed
as a percentage of time points of the entire time series.

3) Effective prediction horizon: For each true event, we com-
puted the effective prediction horizon by adding the pre-
diction window P to the time difference Δt between the
onset of the true event and the onset of the model-predicted
event. When Δt < 0 [Fig. 1(b) and (c); scenario i], the on-
set of the true event preceded the prediction and the lower
limit of Δt was set to –P min. When Δt > 0 [Fig. 1(c); sce-
nario ii], the onset of the model-predicted event preceded
the true event and the upper limit of Δt was set to 30 min
(as explained earlier). The reported effective prediction
horizon was averaged over the number of events.

4) Number of decision switches: the cumulative number of
times the model-predicted output transitioned from one
state to another (0 to 1 or 1 to 0) that was incongruent
with the true state (0 or 1) of the measured temperature
[Fig. 1(d) shows two decision switches: the true state was
0 and the model-predicted output changed first from 0 to
1 and then from 1 to 0].

We computed specificity and the number of decision switches
regardless of whether or not an event had occurred; however, we
only computed sensitivity and effective prediction horizon when
a true event occurred. Note that while specificity measured the
time period for which the algorithm incorrectly predicted the
occurrence of an event, the number of decision switches pro-
vided the number of times the algorithm predictions incorrectly
switched from one state to another.

E. Study Data

To demonstrate the performance of the proposed algorithms,
we used data from a field study involving 22 U.S. Army soldiers
[age: 23.1 year (SD 4.1); height: 178 cm (SD 7); weight 81.3 kg
(SD 11.1), mean and standard deviation (SD)] who performed
regularly scheduled infantry training. The training included a 6-
mile foot march while wearing a backpack and carrying equip-
ment weighing on average 14.0 kg (SD 1.4) and exercises, such
as digging of ditches, setting up concertina wire, marksmanship
drills, running, rolling, and jumping as part of approach to a
target. The training duration was 8–14 h in one day. During
the training, soldiers wore the advanced combat uniform with
a thermal insulation of 1.08 clo and an evaporative potential
of 0.41 im/clo. The ambient temperature was 31.5 °C (SD 2.9)
with a relative humidity of 66% (SD 16) and a wind speed of
9.9 km/h (SD 3.7). The Institutional Review Board of the U.S.
Army Research Institute of Environmental Medicine (Natick,
MA) approved the study. Subjects were briefed on the purpose,
risks, and benefits of the study and each gave their written in-
formed consent prior to study participation. All training was at
the direction of the military unit, i.e., the research team did not
interfere with or ask for any alteration to training events; they
only monitored physiological parameters of the subjects. The
core temperature data were measured using radio-thermometer
pills (MiniMitter, Inc., Bend, OR) that transmitted the data to
the Hidalgo Equivital EQ-02 (Hidalgo, Ltd., Cambridge, UK)
physiological status monitoring (PSM) system [24]. Data were
retrieved from the PSM system at the end of the exercise and
subsequently analyzed. Pills were ingested at least 12 h before
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data collection and had the following technical characteristics:
size: 21.9 mm length and 8.5 mm diameter; weight: 1.75 g; sam-
pling period: 15 s; temperature range: 25–50 °C, with accuracy
of ±0.25 °C; transmission method: near-field magnetic link.

F. Cross Validation of the Algorithms

We performed a cross validation of the four alert algorithms
using the study data as follows:

1) Step 1: Identified subjects that had core temperature val-
ues above a 38 °C temperature threshold for � 15 min.
Eighteen subjects met this criterion.

2) Step 2: Trained an AR model and estimated the SPRT
algorithm parameters using data from one of the subjects
who met the criterion in Step 1. Tested the algorithms on
the remaining 21 subjects by computing the four measures
of performance (sensitivity, specificity, effective predic-
tion horizon, and the number of decision switches) for
each algorithm. Repeated this step for each of the sub-
jects who met the criterion in Step 1.

3) Step 3: Increased the temperature threshold by 0.1 °C and
repeated Steps 1 and 2.

This procedure was repeated for temperature thresholds from
38.0 to 39.5 °C. There were five subjects with core temperature
values beyond 39 °C (hyperthermic threshold) and three subjects
with core temperature values beyond 39.5 °C (see Table III in
Appendix B).

III. RESULTS AND DISCUSSION

To apply the AR model to the core temperature data, we esti-
mated the sampling period S and the model order m as follows.
Analysis of the magnitude spectrum of the core temperature data
led us to fix S to 5 min to preserve the important frequencies of
the signal while rejecting noise. Accordingly, the temperature
measurements were downsampled and reported every 5 min.
Subsequently, we fixed m to 5 based on analysis of the partial
autocorrelation function. For computing the PI in (2), we set
Zα/2 to 2.78 based on the t-distribution for α = 5% and m =
5 [18]. To further test the universal nature of our AR models
[8], for each subject, we compared the root mean squared error
(RMSE) between the AR-model fit and the measured data with
the average RMSE between each of the other 21 AR-model
predictions and the measured data for that subject. We found
that the differences between the 22 pairs of RMSEs were not
significantly different (p = 0.55, paired Wilcoxon signed-rank
test) and the mean RMSE difference was 0.05 °C (SD 0.05 °C).
For the SPRT algorithm, the memory length K was fixed to 3
(corresponding to a memory of 15 min for S = 5 min).

A. Performance of the Algorithms for a Single
Temperature Threshold

Fig. 2 shows the performance of the four alert algorithms on
a single subject based on a temperature threshold of 39 °C
using a model trained on data from another subject (see
Section II-F). The top panel shows the measured core temper-
ature data (dotted line), 20-min-ahead AR-model predictions

Fig. 2. Top panel shows the measured core temperature data from one subject,
20-min-ahead AR model predictions, and the corresponding PIs. The next four
panels show the depiction of a true event (solid line) and algorithm decisions
(dashed lines), for Model, Model+PI, Median Filter, and SPRT algorithms,
respectively. The vertical thin dotted line in these four panels marks the 30-min
point that precedes the true event onset.

(dashed line), and 95% PIs (shaded area). The next four panels
show the depiction of a true event (solid line) and algorithm
decisions (dashed lines), for Model, Model+PI, Median Filter,
and SPRT algorithms, respectively. The vertical thin dotted line
in these four panels marks the 30-min point that precedes the
true event onset.

As shown in Fig. 2 (top panel), we observed that the up-
per PI leads the measured data, whereas the model predictions
lag the data. Hence, by construction, Model yielded the largest
specificity, the smallest sensitivity, and the shortest effective
prediction horizon compared with any of the other three algo-
rithms. Model+PI yielded the largest sensitivity (100%) and
the longest effective prediction horizon (30 min; the predicted
event anticipated the actual event by 10 min beyond the 20-min
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Fig. 3. Cross-validation study of the four algorithms across temperature thresholds from 38.0 to 39.5 °C. Plots show the mean (standard error) across the subjects
for each of the four performance measures for 20-min-ahead AR-model predictions. Sensitivity and effective prediction horizon were defined only for subjects
with events, i.e., those whose core temperature exceeded the corresponding temperature threshold.

prediction window). However, due to inherent noise in the data,
Model+PI also yielded a large number of false alerts, leading
to reduced specificity and a large number of decision switches
compared to Model (specificity: 97% versus 100%; number of
decision switches: 6 versus 0).

When compared to the decisions of Model+PI, Median Filter
yielded fewer decision switches at the cost of a reduced effective
prediction horizon (number of decision switches: 2 versus 6; ef-
fective prediction horizon: 20 min versus 30 min). SPRT had
the same effective prediction horizon as Median Filter (20 min)
but, importantly, had no decision switches (0 versus 2). A four-
fold cross-validation study of five subjects whose temperature
exceeded 39 °C in eight events (Table III) confirmed the afore-
mentioned findings to hold true across our dataset (see Table I).
In these five sets of computations, the range of the SPRT param-
eters obtained by optimizing (A1) was as follows: θ (0.80–0.81),
φ (0.71–0.80), μ0 (38.0–38.4), μ1 (40.0–40.2), σX (0.20–0.25),
log(A) (−89 to 76), and log(B) (−95 to 19). The large range of
values for log(A) and log(B) was driven by one subject [#11;
log(A) = 76 and log(B) = 19], who experienced temperature
excursions just below the 39 °C threshold, and by the goal of
the parameter optimization routine to reduce the number of false

TABLE I
CROSS-VALIDATION ANALYSIS FOR 20-MIN-AHEAD AR-MODEL PREDICTIONS

AT A TEMPERATURE THRESHOLD OF 39 °C

Algorithm Sensitivity
(%)

Specificity
(%)

Effective
prediction

horizon (min)

Number of
decision
switches

Model 74.0 (1.7) 99.3 (0.3) 8 (1) 2
Model+PI 97.6 (0.7) 94.1 (1.3) 29 (1) 8
Median Filter 93.6 (1.2) 95.1 (1.3) 19 (1) 2
SPRT 88.3 (3.6) 96.3 (1.4) 18 (3) 2

Values are mean (standard error) from a fourfold cross-validation study of five subjects
whose core temperatures exceeded 39 °C in eight distinct events (see Table III in
Appendix B).

alerts, which tended to maximize the differences between these
two parameters.

B. Performance of the Algorithms for Temperature Thresholds
From 38.0 to 39.5 °C

Fig. 3 shows the overall cross-validation results of each of
the four algorithms for 20-min-ahead AR-model predictions for
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temperature thresholds between 38.0 and 39.5 °C, for every
0.1 °C increment. Due to varying numbers of subjects with core
temperature values beyond a specified temperature threshold
(see Appendix B, Table III), the number of subjects from which
we computed sensitivity and effective prediction horizon varied.
For all temperature thresholds, we computed sensitivity and
effective prediction horizon using fewer subjects than we used
to compute specificity and the number of decision switches,
which was calculated for each of the 22 subjects.

Similar to the example in Fig. 2, Model (see Fig. 3, squares)
yielded the smallest sensitivity, the shortest effective predic-
tion horizon, and the largest specificity across all temperature
thresholds. Model+PI (see Fig. 3, circles) yielded high sensi-
tivity and a long effective prediction horizon, while producing
a very large number of decision switches across all temperature
thresholds. Median Filter’s performance (see Fig. 3, triangles)
was generally between that of Model+PI and Model across all
measures. In contrast, the SPRT algorithm (see Fig. 3, diamonds)
yielded varying performance across the temperature thresholds,
partially because we estimated different SPRT parameters for
each temperature threshold (see Section II-C).

In Fig. 3 (right panels), the specificity of Model+PI increased
and the number of decision switches decreased with increasing
temperature thresholds. This was because the sustained steep
rise in the temperature data reduced the effects of measurement
noise. This allowed the AR model to better track the data, leading
to fewer prediction errors for Model+PI at higher temperature
thresholds.

The SPRT algorithm yielded sensitivities around 90% for
most temperature thresholds and yielded an overall increas-
ing trend in the effective prediction horizon with increasing
thresholds, especially beyond 39 °C. This is because at higher
thresholds μ1 (the mean temperature above the threshold) was
significantly higher than μ0 (the mean temperature below the
threshold), leading to a wider separation between core temper-
ature values above and below the temperature threshold and
improved estimates of A and B [see (4)], which reduced the
false-positive rate and the false-negative rate.

C. Performance of the Algorithms as a Function
of the AR Model Prediction Window

To evaluate the performance of the algorithms as a function
of prediction window of the AR model, we set P to 15, 20, and
30 min and repeated the cross-validation study of the four algo-
rithms for hyperthermic temperature thresholds (39.0–39.5 °C).
For all algorithms, sensitivity and specificity decreased, while
the effective prediction horizon increased with increasing P (see
Table II). For all algorithms, and in particular Model+PI, the
number of decision switches tended to increase with increasing
P. SPRT yielded effective prediction horizons comparable to
Model+PI for P � 20 min (see Table II, P = 20: 23 versus
25; P = 30: 32 versus 30, all units in min) with a significantly
lower number of decision switches.

The cross-validation studies also suggested that, in general,
the SPRT parameters estimated from one subject’s data could
be directly applied to other subjects for the same temperature

TABLE II
CROSS-VALIDATION STUDY OF THE FOUR ALGORITHMS AS A FUNCTION

OF AR-MODEL PREDICTION WINDOW FOR HYPERTHERMIC

TEMPERATURE THRESHOLDS (39.0–39.5 °C)

Algorithm Sensitivity†

(%)
Specificity∗

(%)
Effective
prediction

horizon† (min)

Number of
decision

switches∗

15 min-ahead AR-model predictions
Model 80.7 (2.6) 99.6 (0.0) 9 (1) 1
Model+PI 98.7 (0.7) 95.5 (0.0) 23 (1) 4
Median Filter 93.1 (1.9) 96.1 (0.0) 13 (1) 2
SPRT 93.8 (2.3) 95.6 (0.1) 18 (3) 2

20 min-ahead AR-model predictions
Model 70.3 (2.5) 98.9 (0.0) 9 (1) 1
Model+PI 97.4 (1.2) 94.9 (0.0) 25 (1) 5
Median Filter 87.0 (2.2) 95.7 (0.1) 15 (1) 2
SPRT 92.7 (2.7) 94.3 (0.1) 23 (3) 2

30 min-ahead AR-model predictions
Model 51.5 (2.6) 99.2 (0.0) 11 (1) 2
Model+PI 88.1 (1.8) 93.4 (0.1) 30 (2) 7
Median Filter 69.7 (3.3) 94.4 (0.1) 19 (2) 2
SPRT 87.8 (4.2) 91.6 (0.2) 32 (4) 3

Table shows values averaged over temperature thresholds from 39.0 to 39.5 °C.
∗Values are mean (standard error) across all 22 subjects in the cross-validation study
(see Table III in Appendix B).
†Values are mean (standard error) across subjects with events in the cross-validation
study (see Table III in Appendix B).

threshold. However, we obtained more robust parameter esti-
mates, in particular for parameters A and B, when the training
subject’s data both exceeded the temperature threshold and hov-
ered just below it. Using such a procedure to select subjects from
which to estimate the SPRT parameters, as opposed to using
all subjects whose temperature exceeded the threshold as per-
formed here, would have improved the specificity of the SPRT
algorithm in Tables I and II.

IV. CONCLUSION

We found that, as expected, using PIs along with AR-model
predictions increased the effective prediction horizon, enabling
earlier detection of the onset of core temperature rise than other-
wise possible using AR-model predictions alone. We also found
that none of the three proposed alert algorithms was consistently
superior in each of the four assessed measures of performance.
While Model+PI yielded the largest sensitivity and the longest
effective prediction horizon, it also yielded the largest number
of decision switches. In contrast, delaying alert decisions—
through filtering (Median Filter) or through accumulation of
evidence (SPRT)—yielded a small number of decision switches
at the cost of reduced sensitivity and effective prediction
horizon.

Increasing the prediction window of the AR model increased
the effective prediction horizon for all algorithms at the ex-
pense of a decreased sensitivity, a decreased specificity, and an
increased number of decision switches.

For practical applications, we suggest the use of a 20-min
AR-model prediction window and a temperature alert threshold
set to 39 °C. This should provide a sufficiently high threshold
to reduce spurious alerts, while allowing for useful lead time
for proactive cooling interventions that could alter the course
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TABLE III
NUMBER OF EVENTS FOR EACH SUBJECT AT DIFFERENT TEMPERATURE THRESHOLDS

Subjects Temperature threshold (°C)

38.0 38.1 38.2 38.3 38.4 38.5 38.6 38.7 38.8 38.9 39.0 39.1 39.2 39.3 39.4 39.5
1 1 1 1 1 1 1 1 1 1 1
2 3 3 3 3 3 3 3 3 2 1
3 3 3 3 4 3 3 2 1 1 1
4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 1 1 1 1 1
6 2 2 2 2 2 1
7 3 3 3 3 3 3 3 3 3 3 3 2 2 2 1 1
8
9 1
10 2 1 1 1 1 1 1
11 3 4 4 3 3 3 3 2 1 1 1 1 1
12 1 1
13
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 3 3 2 1 1
16
17
18 1 1 1
19 3 3 2 1 1 1 1 1 1 1
20 2 2 2 1 1 1
21 4 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1
Total 36 35 32 27 24 21 18 15 13 12 8 7 7 6 5 4

of the clinical outcome [4]. We recommend two possible alert
algorithms: When the intent is to prevent the occurrence (or
reoccurrence) of heat injury at any cost, we recommend the use
of Model+PI, which, in addition to its simplicity, provides ex-
tremely high sensitivity (∼98%) and a long effective prediction
horizon (29 min). When spurious alerts are the main concern, we
recommend the use of SPRT, which provides the smallest num-
ber of decision switches with reasonable overall performance.

A practical limitation of the proposed concept is the use of an
invasive sensor to measure core temperature. We are currently
developing an alternative approach that combines environmen-
tal and activity measurements with phenomenological and first-
principle models to estimate core temperature and obviate the
need for ingestion of a temperature pill. We are also in the pro-
cess of integrating the Model+PI and SPRT algorithms into the
Equivital EQ-02 sensor electronics module [24] (Hidalgo, Ltd.)
and assessing the performance of the integrated system during
military training exercises. Together with the work described
here, these efforts shall lead to a hardware/software system for
real-time alerting of an increasing core temperature and a re-
duced incidence of heat injuries.

APPENDIX A
OPTIMIZING THE SPRT ALGORITHM

The seven parameters of the SPRT algorithm (see
Section II-C; the two weights θ and φ in (3) and the five pa-
rameters μ0 , μ1 , σX , A, and B) were estimated for a subject by
minimizing the following cost function:

J = 10 (1 − Sensitivity) + (1 − Specificity)

+
∣∣∣ td −30−tm

td −30

∣∣∣ + #of decision switches
2×(# of events)

(A1)

where td and tm denote the time of event onset and the model-
predicted event onset, respectively, both in minutes. We set a
30-min window before the event onset to force the optimiza-
tion algorithm to provide the best-possible effective prediction
horizon. The four measures, namely, sensitivity, specificity, ef-
fective prediction horizon, and number of decision switches,
are described in Section II-D. The number of decision switches
was normalized by twice the number of true events because
each model-predicted event that is not a true event causes two
decision switches. In other words, the fourth term in (A1)
penalizes model-predicted events that were not true events.
We used the Nelder–Mead simplex method implemented in
MATLAB version 7.14 (function fminsearch) to estimate the
SPRT parameters that minimize (A1). Our initial efforts at op-
timizing (A1) without weighting the cost for sensitivity led to
poor effective prediction horizons. Hence, we performed several
optimizations by weighting the sensitivity by 5, 10, 20, and 30
and found that for weights beyond 10 the algorithm performance
did not improve substantially.

APPENDIX B
CROSS-VALIDATION STUDY TABLE

Table III shows the number of subjects whose core tempera-
ture crossed a temperature threshold (from 38.0 to 39.5 °C, with
0.1 °C increments) and triggered an event. It also shows the total
number of distinct events for each temperature threshold.

DISCLAIMER

The opinions and assertions contained herein are the
private views of the authors and are not to be construed as
official or as reflecting the views of the U.S. Army or of the
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